Título | Matrices totally positive relative to a tree, II |
---|---|
Autores | COSTAS SANTOS, ROBERTO SANTIAGO, Johnson, C. R. |
Publicación externa | Si |
Medio | Linear Algebra Its Appl |
Alcance | Article |
Naturaleza | Científica |
Cuartil JCR | 1 |
Cuartil SJR | 1 |
Impacto JCR | 0.973 |
Impacto SJR | 1.07 |
Web | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84964474465&doi=10.1016%2fj.laa.2016.04.021&partnerID=40&md5=34d6e31c84c9edbc1cc1278e9c89a4d2 |
Fecha de publicacion | 15/09/2016 |
ISI | 000378464500001 |
Scopus Id | 2-s2.0-84964474465 |
DOI | 10.1016/j.laa.2016.04.021 |
Abstract | If T is a labelled tree, a matrix A is totally positive relative to T, principal submatrices of A associated with deletion of pendent vertices of T are P-matrices, and A has positive determinant, then the smallest absolute eigenvalue of A is positive with multiplicity 1 and its eigenvector is signed according to T. This conclusion has been incorrectly conjectured under weaker hypotheses. (C) 2016 Elsevier Inc. All rights reserved. |
Palabras clave | Graph; Neumaier conclusion; Spectral theory; Sylvester's identity; Totally positive matrix; Totally positive relative to a tree |
Miembros de la Universidad Loyola |