Título | (Pseudo) digraphs and Leibniz algebra isomorphisms |
---|---|
Autores | CEBALLOS GONZÁLEZ, MANUEL, Nunez, Juan , Tenorio, Angel F. |
Publicación externa | No |
Medio | Math Methods Appl Sci |
Alcance | Article |
Naturaleza | Científica |
Cuartil JCR | 2 |
Cuartil SJR | 1 |
Impacto JCR | 1.533 |
Web | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85062603456&doi=10.1002%2fmma.5064&partnerID=40&md5=1bc4f399af71713745fd7d8386e2cb35 |
Fecha de publicacion | 30/11/2018 |
ISI | 000452611200031 |
Scopus Id | 2-s2.0-85062603456 |
DOI | 10.1002/mma.5064 |
Abstract | This paper studies the link between isomorphic digraphs and isomorphic\n Leibniz algebras, determining in detail this fact when using (psuedo)\n digraphs of 2 and 3 vertices associated with Leibniz algebras according\n to their isomorphism classes. Moreover, we give the complete list with\n all the combinatorial structures of 3 vertices associated with Leibniz\n algebras, studying their isomorphism classes. We also compare our\n results with the current classifications of 2- and 3-dimensional Leibniz\n algebras. Finally, we introduce and implement the algorithmic procedure\n used for our goals and devoted to decide if a given combinatorial\n structure is associated or not with a Leibniz algebra. |
Palabras clave | algorithm; combinatorial structure; isomorphism class; Leibniz algebra; (pseudo) digraph |
Miembros de la Universidad Loyola |