| Título | Abelian Subalgebras and Ideals of Maximal Dimension in Solvable Leibniz Algebras |
|---|---|
| Autores | CEBALLOS GONZÁLEZ, MANUEL, Towers, David A. |
| Publicación externa | No |
| Medio | Mediterr. J. Math. |
| Alcance | Article |
| Naturaleza | Científica |
| Cuartil JCR | 1 |
| Cuartil SJR | 2 |
| Impacto JCR | 1.1 |
| Impacto SJR | 0.604 |
| Web | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85147441990&doi=10.1007%2fs00009-023-02306-4&partnerID=40&md5=83879dd7334281fea2d81a8a39fdf92c |
| Fecha de publicacion | 01/04/2023 |
| ISI | 000926227500003 |
| Scopus Id | 2-s2.0-85147441990 |
| DOI | 10.1007/s00009-023-02306-4 |
| Abstract | In this paper, we compare the abelian subalgebras and ideals of maximal dimension for finite-dimensional Leibniz algebras. We study Leibniz algebras containing abelian subalgebras of codimension 1, solvable and supersolvable Leibniz algebras for codimensions 1 and 2, nilpotent Leibniz algebras in case of codimension 2, and we also analyze the case of k-abelian p-filiform Leibniz algebras. Throughout the paper, we also give examples to clarify some results and the need for restrictions on the underlying field. |
| Palabras clave | Leibniz algebra; abelian subalgebra; abelian ideal; solvable; nilpotent |
| Miembros de la Universidad Loyola |