| Título | Finite-dimensional Leibniz algebras and combinatorial structures |
|---|---|
| Autores | CEBALLOS GONZÁLEZ, MANUEL, Nunez, J. , Tenorio, A. F. |
| Publicación externa | No |
| Medio | Commun. Contemp. Math. |
| Alcance | Article |
| Naturaleza | Científica |
| Cuartil JCR | 1 |
| Cuartil SJR | 1 |
| Impacto JCR | 1.394 |
| Web | https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994633258&doi=10.1142%2fS0219199717500043&partnerID=40&md5=d5956a0efa40ae04514362c6f9e6ae1b |
| Fecha de publicacion | 01/02/2018 |
| ISI | 000413441800006 |
| Scopus Id | 2-s2.0-84994633258 |
| DOI | 10.1142/S0219199717500043 |
| Abstract | Given a finite-dimensional Leibniz algebra with certain basis, we show how to associate such algebra with a combinatorial structure of dimension 2. In some particular cases, this structure can be reduced to a digraph or a pseudodigraph. In this paper, we study some theoretical properties about this association and we determine the type of Leibniz algebra associated to each of them. |
| Palabras clave | Digraph; pseudodigraph; combinatorial structure; Leibniz algebra; Lie algebra |
| Miembros de la Universidad Loyola |