Título Finite-dimensional Leibniz algebras and combinatorial structures
Autores CEBALLOS GONZÁLEZ, MANUEL, Nunez, J. , Tenorio, A. F.
Publicación externa No
Alcance Article
Naturaleza Científica
Cuartil JCR 1
Cuartil SJR 1
Impacto JCR 1.394
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994633258&doi=10.1142%2fS0219199717500043&partnerID=40&md5=d5956a0efa40ae04514362c6f9e6ae1b
Fecha de publicacion 01/02/2018
ISI 000413441800006
Scopus Id 2-s2.0-84994633258
DOI 10.1142/S0219199717500043
Abstract Given a finite-dimensional Leibniz algebra with certain basis, we show how to associate such algebra with a combinatorial structure of dimension 2. In some particular cases, this structure can be reduced to a digraph or a pseudodigraph. In this paper, we study some theoretical properties about this association and we determine the type of Leibniz algebra associated to each of them.
Palabras clave Digraph; pseudodigraph; combinatorial structure; Leibniz algebra; Lie algebra
Miembros de la Universidad Loyola

Change your preferences Gestionar cookies