Título |
Intensidad exportadora e interacción entre fortalezas del marketing mix: Un análisis basado en redes neuronales artificiales |
Autores |
GUTIÉRREZ VILLAR, MARÍA BELÉN, MONTERO SIMÓ, MARÍA JOSÉ, ARAQUE PADILLA, RAFAEL, CASTRO GONZÁLEZ, PILAR |
Publicación externa |
No |
Medio |
Revista de Metodos Cuantitativos para la Economia y la Empresa |
Alcance |
Article |
Naturaleza |
Científica |
Cuartil SJR |
3 |
Impacto SJR |
0.137 |
Web |
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920983382&partnerID=40&md5=1cac239bf3e7affa116faa8f98b3f9b0 |
Fecha de publicacion |
01/01/2014 |
Scopus Id |
2-s2.0-84920983382 |
Abstract |
Among the determining factors in export activity, many studies have high-lighted the relevance of the marketing mix. Generally, the majority of them use a variables analysis to focus on specific strategies, in particular, standardized-adaptations. This paper analyzes if there is an interactive effect of strength generated in different variables of the marketing mix that can be associated with different export profiles. The Extreme Learning Machine (ELM) algorithm has been used within the Multilayer Perceptron (MLP) of Artificial Neural Networks (ANN). In addition, the analyses combine a novel approach for sensitivity analysis developed ad hoc for this paper to determine the individual and interactive effects of predictable variables on the dependent variable in classification problems of a dichotomous nature. The results obtained allow us to confirm the existence of the postulated interactive effects, simultaneously revealing the usefulness of ANN and of the sensitivity analysis proposed for research in the area of marketing and, specifically, in firms\' internationalization studies. |
Palabras clave |
Artificial neural networks; Extreme learning machine; Internationalization; Marketing mix; Sensitivity analysis |
Miembros de la Universidad Loyola |
|