Título Intensidad exportadora e interacción entre fortalezas del marketing mix: Un análisis basado en redes neuronales artificiales
Autores GUTIÉRREZ VILLAR, MARÍA BELÉN, MONTERO SIMÓ, MARÍA JOSÉ, ARAQUE PADILLA, RAFAEL, CASTRO GONZÁLEZ, PILAR
Publicación externa No
Medio Revista de Metodos Cuantitativos para la Economia y la Empresa
Alcance Article
Naturaleza Científica
Cuartil SJR 3
Impacto SJR 0.137
Web https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920983382&partnerID=40&md5=1cac239bf3e7affa116faa8f98b3f9b0
Fecha de publicacion 01/01/2014
Scopus Id 2-s2.0-84920983382
Abstract Among the determining factors in export activity, many studies have high-lighted the relevance of the marketing mix. Generally, the majority of them use a variables analysis to focus on specific strategies, in particular, standardized-adaptations. This paper analyzes if there is an interactive effect of strength generated in different variables of the marketing mix that can be associated with different export profiles. The Extreme Learning Machine (ELM) algorithm has been used within the Multilayer Perceptron (MLP) of Artificial Neural Networks (ANN). In addition, the analyses combine a novel approach for sensitivity analysis developed ad hoc for this paper to determine the individual and interactive effects of predictable variables on the dependent variable in classification problems of a dichotomous nature. The results obtained allow us to confirm the existence of the postulated interactive effects, simultaneously revealing the usefulness of ANN and of the sensitivity analysis proposed for research in the area of marketing and, specifically, in firms\' internationalization studies.
Palabras clave Artificial neural networks; Extreme learning machine; Internationalization; Marketing mix; Sensitivity analysis
Miembros de la Universidad Loyola

Change your preferences Gestionar cookies